Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Photosynthetic acclimation to both warming and elevated CO2of boreal trees remains a key uncertainty in modelling the response of photosynthesis to future climates. We investigated the impact of increased growth temperature and elevated CO2on photosynthetic capacity (VcmaxandJmax) in mature trees of two North American boreal conifers, tamarack and black spruce. We show thatVcmaxandJmaxat a standard temperature of 25°C did not change with warming, whileVcmaxandJmaxat their thermal optima (Topt) and growth temperature (Tg) increased. Moreover,VcmaxandJmaxat either 25°C,ToptorTgdecreased with elevated CO2. TheJmax/Vcmaxratio decreased with warming when assessed at bothToptandTgbut did not significantly vary at 25°C. TheJmax/Vcmaxincreased with elevated CO2at either reference temperature. We found no significant interaction between warming and elevated CO2on all traits. If this lack of interaction between warming and elevated CO2on theVcmax,JmaxandJmax/Vcmaxratio is a general trend, it would have significant implications for improving photosynthesis representation in vegetation models. However, future research is required to investigate the widespread nature of this response in a larger number of species and biomes.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Abstract Warming shifts the thermal optimum of net photosynthesis (ToptA) to higher temperatures. However, our knowledge of this shift is mainly derived from seedlings grown in greenhouses under ambient atmospheric carbon dioxide (CO2) conditions. It is unclear whether shifts inToptAof field-grown trees will keep pace with the temperatures predicted for the 21stcentury under elevated atmospheric CO2concentrations. Here, using a whole-ecosystem warming controlled experiment under either ambient or elevated CO2levels, we show thatToptAof mature boreal conifers increased with warming. However, shifts inToptAdid not keep pace with warming asToptAonly increased by 0.26–0.35 °C per 1 °C of warming. Net photosynthetic rates estimated at the mean growth temperature increased with warming in elevated CO2spruce, while remaining constant in ambient CO2spruce and in both ambient CO2and elevated CO2tamarack with warming. Although shifts inToptAof these two species are insufficient to keep pace with warming, these boreal conifers can thermally acclimate photosynthesis to maintain carbon uptake in future air temperatures.more » « less
-
Summary Deep‐water access is arguably the most effective, but under‐studied, mechanism that plants employ to survive during drought. Vulnerability to embolism and hydraulic safety margins can predict mortality risk at given levels of dehydration, but deep‐water access may delay plant dehydration. Here, we tested the role of deep‐water access in enabling survival within a diverse tropical forest community in Panama using a novel data‐model approach.We inversely estimated the effective rooting depth (ERD, as the average depth of water extraction), for 29 canopy species by linking diameter growth dynamics (1990–2015) to vapor pressure deficit, water potentials in the whole‐soil column, and leaf hydraulic vulnerability curves. We validated ERD estimates against existing isotopic data of potential water‐access depths.Across species, deeper ERD was associated with higher maximum stem hydraulic conductivity, greater vulnerability to xylem embolism, narrower safety margins, and lower mortality rates during extreme droughts over 35 years (1981–2015) among evergreen species. Species exposure to water stress declined with deeper ERD indicating that trees compensate for water stress‐related mortality risk through deep‐water access.The role of deep‐water access in mitigating mortality of hydraulically‐vulnerable trees has important implications for our predictive understanding of forest dynamics under current and future climates.more » « less
An official website of the United States government
